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Trigonometric series for the average (A) and difference (D) intensities of

Friedel opposites were carefully rederived and were normalized to minimize

their dependence on sinð#Þ=�. Probability density functions (hereafter p.d.f.s) of

these series were then derived by the Fourier method [Shmueli, Weiss, Kiefer &

Wilson (1984). Acta Cryst. A40, 651–660] and their expressions, which admit any

chemical composition of the unit-cell contents, were obtained for the space

group P1. Histograms of A and D were then calculated for an assumed random-

structure model and for 3135 Friedel pairs of a published solved crystal

structure, and were compared with the p.d.f.s after the latter were scaled up to

the histograms. Good agreement was obtained for the random-structure model

and a qualitative one for the published solved structure. The results indicate that

the residual discrepancy is mainly due to the presumed statistical independence

of the p.d.f.’s characteristic function on the contributions of the interatomic

vectors.

1. Introduction

Examination of the distribution of the Bragg reflection

intensities can be useful at various stages of structure analysis.

The most widely used application is the comparison of the

distribution of normalized observed intensities with the

theoretical ones for space groups P1 and P1 (Wilson, 1949).

The objective is to determine whether the space group of the

unknown crystal is centrosymmetric or non-centrosymmetric.

The theoretical distributions of Wilson (1949) have been

derived on the basis of a large number of identical atoms in the

triclinic system, ignoring the effect of resonant scattering and

using the central limit theorem. In practice, erroneous indi-

cations of whether the structure is centrosymmetric or non-

centrosymmetric often occur. Shmueli & Weiss (1995) have

presented techniques to overcome the limitations of Wilson

statistics, but practical applications have been limited. More-

over, the enigma that pseudo-centrosymmetric structures

nevertheless give reliable indications of the Flack (1983)

parameter led Flack & Shmueli (2007) to investigate the first

and second moments of the intensity distributions of the

average and difference of the Friedel opposites. This analysis

resolved the enigma and resulted in Shmueli et al. (2008)

investigating the effect of point-group symmetry and lattice

centering on these moments. However, for the crucial step of

determining whether an unknown crystal is centrosymmetric

or non-centrosymmetric, the full probability distribution of

intensity or, better, of the average and difference intensities of

Friedel opposites free of the assumptions of Wilson (1949) are

required. The present paper makes an important contribution

to the solution of this problem.

Parthasarathy & Srinivasan (1964), Parthasarathy (1967)

and Srinivasan & Parthasarathy (1976) have undertaken to

calculate the probability distribution of Bijvoet differences,

the expectation values of Bijvoet ratios and various other

functions associated with the effect of resonant scattering on

Friedel differences. However, their starting models of the

compounds always assume that there are P resonant atoms of

the same chemical element along with Q non-resonant atoms.

Q is taken to be large leading to ideal probability distributions

for the non-resonant atoms. This starting assumption severely

limits the applicability of their results. One never finds the

important factor ðfi f 00j � fj f 00i Þ appearing in their work,

although it does occur in those of Okaya & Pepinsky (1955),

Rossmann & Arnold (2001) and Shmueli et al. (2008).

The present probabilistic treatment of the problem was

carried out along the lines of that described by Shmueli

& Weiss (1995). The obvious advantage of the probability

density functions (p.d.f.s) derived in this work over those given

by the above authors are that:

(i) our p.d.f.s take into account explicitly any chemical

composition of the compound investigated, and

(ii) our p.d.f.s are exact and are thus applicable to compo-

sitions for which the central limit theorem (as implied in the

Wilson, 1949, statistics and used by the above authors) breaks

down.

These p.d.f.s are compared with simulated distributions of the

average and difference of the intensities of Friedel opposites,



as well as with such distributions based on explicitly calculated

quantities from published parameters of a solved crystal

structure.

2. Preliminaries

It appears that the main prerequisites for the derivation of the

p.d.f. of the average and difference of the intensities of Friedel

opposites are convenient functional forms of these quantities.

The expressions given by Okaya & Pepinsky (1955) and re-

derived later (e.g. Rossmann & Arnold, 2001), in their studies

of the influence of resonant scattering on the Patterson

function, seem to be eminently suitable. For the sake of

completeness, they will be rederived here for the space group

P1. We have

jFðhÞj2 ¼ FðhÞF�ðhÞ

¼
PN
i¼1

ðfi þ if 00i Þ expð2�ih � riÞ
PN
j¼1

ðfj � if 00j Þ expð�2�ih � rjÞ

¼
PN
i¼1

PN
j¼1

½ðfi fj þ f 00i f 00j Þ � iðfi f 00j � f 00i fjÞ� exp½2�ih � ðri � rjÞ�;

ð1Þ

where fi and fj include the real parts of the resonant-scattering

contribution. The components of the atomic scattering factor

also include the displacement parameters.

Since jFðhÞj2 is of necessity real, we take the real parts of

equation (1). This leads to

jFðhÞj2 ¼
PN
i¼1

PN
j¼1

½ðfi fj þ f 00i f 00j Þ cos½2�h � ðri � rjÞ�

þ
PN
i¼1

PN
j¼1

ðfi f 00j � f 00i fjÞ sin½2�h � ðri � rjÞ� ð2Þ

and since only the sine term in equation (2) changes sign as h

changes its sign

jFð�hÞj2 ¼
PN
i¼1

PN
j¼1

½ðfi fj þ f 00i f 00j Þ cos½2�h � ðri � rjÞ�

�
PN
i¼1

PN
j¼1

ðfi f 00j � f 00i fjÞ sin½2�h � ðri � rjÞ�: ð3Þ

The average reduced intensity of Friedel opposites is now

given by

AFðhÞ ¼
1
2 ½jFðhÞj

2
þ jFð�hÞj2�

¼
PN
i¼1

PN
j¼1

ðfi fj þ f 00i f 00j Þ cos½2�h � ðri � rjÞ� ð4Þ

and the difference reduced intensity by

DFðhÞ ¼ jFðhÞj
2
� jFð�hÞj2

¼ 2
PN
i¼1

PN
j¼1

ðfi f 00j � f 00i fjÞ sin½2�h � ðri � rjÞ�: ð5Þ

Equation (5) is the expression given by Okaya & Pepinsky

(1955). In the following we normalize the above expressions to

remove as far as possible the variation of the free-electron

atomic scattering factors and the Debye–Waller factors with

sinð#Þ=�, as is common in all direct methods for the solution of

crystal structures. To normalize AF and DF we may divide the

real and imaginary parts of the scattering factor with
ffiffiffiffi
�
p

,

where Wilson’s � is given by

� ¼
P

i

ð f 2
i þ f 002i Þ ð6Þ

and equals the mean value of AF (Flack & Shmueli, 2007). We

hence come to

AE ¼ AF=� ð7Þ

DE ¼ DF=� ð8Þ

for the space group P1. It is necessary to make some comment

on this choice of normalization. It is known to work well for

the calculation of AE. For the normalization of DF it is not

possible to use hDFi as the latter is zero. The obvious second

choice is to use hD2
Fi

1=2 as the normalization factor in the

denominator. For measured intensities this can lead to diffi-

culties as often the values of jDobsj are subject to large

uncertainty and, as shown by Flack et al. (2010), frequently

jDobsj are considerably overestimated. Flack et al. (2010)

convincingly demonstrated that the values of D have a

different dependence on sinð#Þ=� than the values of A. As a

consequence, in one practical application Flack et al. (2010)

preferred to first normalize the value of D, as given by

equation (8), and then apply an additional correction which

allowed for the different dependence on sinð#Þ=� of the values

of D from the values of A. In writing equation (8) this addi-

tional correction has been omitted and allows AE and DE to be

written in terms of jEðhÞj and jEð�hÞj, as given below.

In this paper AE and DE hence refer to the normalized

average and difference reduced intensities of Friedel oppo-

sites, and since for the space group P1 the order of the isotropy

subgroup (e.g. Shmueli et al., 2008) equals unity, they can be

defined as

AE ¼
1
2 jEðhÞj

2
þ jEð�hÞj2

� �
ð9Þ

DE ¼ jEðhÞj
2
� jEð�hÞj2; ð10Þ

where EðhÞ is the normalized structure factor of reflection h.

We wish to express equations (4)–(8) more concisely taking

care of the diagonal terms ii and the related off-diagonal terms

ij and ji. We write Lij to mean a run of values over the lower

off-diagonal triangle of a square N � N matrix with elements

ij. Lij will be used in sums and products such as

P
Lij

�
PN
i¼2

Pi�1

j¼1

and
Q
Lij

�
QN
i¼2

Qi�1

j¼1

:

Let also Rij � ri � rj.

To rewrite equations (7) and (8), let

aij � ðfi fj þ f 00i f 00j Þ=� ð11Þ

and

dij � ðfi f 00j � fj f 00i Þ=�: ð12Þ

research papers

670 Shmueli and Flack � Probability density functions of Friedel opposites Acta Cryst. (2010). A66, 669–675



For AEðhÞ, aij ¼ aji and cosð2�h � RijÞ ¼ cosð2�h � RjiÞ. There-

fore, the matrix jjaij cosð2�h � RijÞjj is symmetric. However,

PN
i¼1

aii ¼
PN
i¼1

ðf 2
i þ f 002i Þ=� ¼ 1

and therefore

AEðhÞ ¼ 1þ 2
P
Lij

aij cosð2�h � RijÞ: ð13Þ

For DEðhÞ, dji ¼ �dij and sinð2�h � RjiÞ ¼ � sinð2�h � RijÞ.

Therefore, dji sinð2�h � RjiÞ ¼ dij sinð2�h � RijÞ and the matrix

jjdij sinð2�h � RijÞjj is symmetric, while all its terms on the main

diagonal have a value of zero. Hence, also in view of equation

(5)

DEðhÞ ¼ 4
P
Lij

dij sinð2�h � RijÞ: ð14Þ

3. The p.d.f. of AE and its characteristic function

The expression for AE, to be used in explicit computations, is

given by equation (13). However, in the calculation of the

p.d.f. of AE we shall use the definition

A0EðhÞ � AEðhÞ � 1 ¼ 2
P
Lij

aij cosð2�h � RijÞ: ð15Þ

It is seen from equations (15) and (11), and the fact that aij > 0,

that the maximum possible value of A0E is

A0EðmaxÞ ¼ 2
P
Lij

aij: ð16Þ

Hence, the probability of finding A0EðhÞ outside the range

½�A0EðmaxÞ;A0EðmaxÞ� is zero. The p.d.f. of A0E (h omitted for

simplicity) can therefore be expanded in a Fourier series

within the range of its existence (Barakat, 1974; Shmueli et al.,

1984).

The general form of the p.d.f. expressed as a Fourier series

of A0E can be written as

pðA0EÞ ¼
1

2A0EðmaxÞ

X1
k¼�1

Qk exp �
�ikA0E

A0EðmaxÞ

� �
ð17Þ

or

pðA0EÞ ¼
�

2

X1
k¼�1

Qk expð��ik�A0EÞ; ð18Þ

where � ¼ 1=A0EðmaxÞ. From the basic Fourier theory the

coefficients Qk are given by

Qk ¼
RA0

E
ðmaxÞ

�A0
E
ðmaxÞ

pðA0EÞ expð�ik�A0EÞ dA0E: ð19Þ

Since pðA0EÞ vanishes outside the interval ½�A0EðmaxÞ,

A0EðmaxÞ�, the integration limits in equation (19) may be

replaced by 	1 without loss of generality (Shmueli & Weiss,

1995). We thus have

Qk ¼
R1
�1

pðA0EÞ expð�ik�A0EÞ dA0E: ð20Þ

If we define, as is customary, the expected value of a function

f ðxÞ as

Eðf Þ ¼
R1
�1

f ðxÞpðxÞ dx � hf i;

the coefficient Qk is the expected value of the exponential in

equation (20) which can be written as

Qk ¼ hexpð�ik�A0EÞi ð21Þ

¼ exp 2�ik�
P
Lij

aij cosð2�h � RijÞ

" #* +
ð22Þ

¼
Q
Lij

expð2�ik�aij cos ’ijÞ

* +
ð23Þ

¼
Q
Lij

hexpð2�ik�aij cos ’ijÞi ð24Þ

¼
Q
Lij

hexpð2�ik�aij cos ’Þi ð25Þ

¼
Q
Lij

ð1=2�Þ
R�
��

expð2�ik�aij cos ’Þ d’ ð26Þ

¼
Q
Lij

J0ð2�k�aijÞ: ð27Þ

Equation (21) is the characteristic function of the p.d.f. of A0E
at the point �k� (e.g. Shmueli & Weiss, 1995), which was

simplified to equation (27) thanks to two assumptions to be

mentioned below. Equation (22) is obtained from equation

(21) by inserting the expression for A0E from equation (15).

Since only the fractional part of h � Rij is relevant, the argu-

ment of the cosine in equation (22) is replaced by the angle ’ij,

which exists somewhere in the [0; 2�] interval. Since the

complex exponentials in equation (23), also depending on the

various interatomic vectors Rij in the lower off-diagonal

triangle, are assumed to be independent, the average of the

product in equation (23) is replaced with a product of the

averages in equation (24). Since the fractional part of h � Rij is

assumed to be uniform in the [0, 1] interval, this implies the

uniformity of ’ij in the [0; 2�] interval and the indices ij on ’
are therefore omitted in equation (25). The integral in equa-

tion (26) is just a representation of the Bessel function of zero

order and of the first kind (e.g. Abramowitz & Stegun, 1972)

which appears in equation (27).

If we now insert equation (27) into equation (18), the p.d.f.

of A0E becomes

pðA0EÞ ¼
�

2

X1
k¼�1

Y
Lij

J0ð2�k�aijÞ

2
4

3
5 expð��ik�A0EÞ: ð28Þ

Since for k ¼ 0 the argument of J0 is zero, this term contri-

butes J0ð0Þ ¼ 1. Since J0ð�xÞ ¼ J0ðxÞ, then Q�k ¼ Qk. Further,

expð��ik�A0EÞ þ expð�ik�A0EÞ ¼ 2 cosð�k�A0EÞ and equation

(28) therefore simplifies to
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pðA0EÞ ¼
�

2
1þ 2

X1
k¼1

Y
Lij

J0ð2�k�aijÞ

2
4

3
5 cosð�k�A0EÞ

8<
:

9=
;: ð29Þ

Finally, since pðA0EÞ ¼ pð�A0EÞ, we find the required p.d.f.

pðjA0EjÞ as

pðjA0EjÞ ¼ � 1þ 2
P1
k¼1

Q
Lij

J0ð2�k�aijÞ

" #
cosð�k�jA0EjÞ

( )
: ð30Þ

It is interesting to point out that the p.d.f. pðjA0EjÞ has the same

functional form as the p.d.f. of jEj for the centrosymmetric

space group P1 [cf. equation (5.1.9) in Shmueli & Weiss, 1995].

The reason for this is a similar functional form of A0E in

equation (15) to that of the expression for the normalized

structure factor, E. The coefficients and their meaning are of

course entirely different.

4. The p.d.f. of DE and its characteristic function

It is seen from equation (14), upon taking the absolute

magnitude of dij, that the maximum possible value of DEðhÞ is

DEðmaxÞ ¼ 4
P
Lij

jdijj: ð31Þ

Similar to the case of A0E, the probability of finding DEðhÞ

outside the range ½�DEðmaxÞ;DEðmaxÞ� is zero. The p.d.f. of

DE (h omitted for simplicity) can therefore be expanded in a

Fourier series within the range of its existence (Barakat, 1974;

Shmueli et al., 1984).

The general form of the p.d.f. expressed as a Fourier series

of DE can be written as

pðDEÞ ¼
1

2DEðmaxÞ

X1
k¼�1

Ck exp �
�ikDE

DEðmaxÞ

� �
ð32Þ

or

pðDEÞ ¼
�

2

X1
k¼�1

Ck expð��ik�DEÞ; ð33Þ

where � ¼ 1=DEðmaxÞ. In analogy with equation (21) the

characteristic function of the p.d.f. of DE is

Ck ¼ hexpð�ik�DEi: ð34Þ

The subsequent derivation is exactly analogous to the deri-

vation of the p.d.f. of A0E. It differs in that dij replaces aij, �
replaces � and DE replaces A0E. The interpretation of the

average [analogous to equation (26)] as a Bessel function J0ðxÞ

follows from the relation

J0ðxÞ ¼
1

2�

Z�
��

expðix cos �Þ d� ¼
1

2�

Z�
��

expðix sin �Þ d�;

which is readily derived from the generating function of Bessel

functions of the first kind (e.g. Abramowitz & Stegun, 1972).

The intermediate result for pðDEÞ is

pðDEÞ ¼
�

2

X1
k¼�1

Y
Lij

J0ð4�k�dijÞ

2
4

3
5 expð��ik�DEÞ: ð35Þ

Since for k ¼ 0 the argument of J0 is zero, this term contri-

butes J0ð0Þ ¼ 1. Since J0ð�xÞ ¼ J0ðxÞ, we have C�k ¼ Ck.

Further, expð��ik�DEÞ þ expð�ik�DEÞ ¼ 2 cosð�k�DEÞ and

equation (35) therefore simplifies to

pðDEÞ ¼
�

2
1þ 2

X1
k¼1

Y
Lij

J0ð4�k�dijÞ

2
4

3
5 cosð�k�DEÞ

8<
:

9=
;: ð36Þ

5. Methodology for comparison of the p.d.f.s with
various histograms of AE and DE

The above theoretical derivation is of interest for its own sake,

however, it appears to be very important to find out to what

extent these p.d.f.s of A0E and DE are meaningful when tested

against data from a crystal belonging to the space group P1.

The essence of such a study is the construction of various

histograms of AE and DE and their comparison with the p.d.f.s

of A0E and DE, respectively, when placed on the same scale.

There are three distinct ways of creating the histograms of AE

and DE described in the following subsections. Each provides

a different way of comparing theory with experiment.

All the computations were programmed with GNU

FORTRAN software, and the drawings were produced with

the aid of the PGPLOT FORTRAN subroutine package. The

discrepancy or agreement between the p.d.f.s and the histo-

grams was computed as the conventional R factor defined as

R ¼

P
i jhi � pijP

i hi

;

where hi is the height of the ith histogram bin and pi is the

value of the p.d.f. at the midpoint of the basis of the ith

histogram bin. The R factors are given at the top of the figure

boxes.

5.1. Random-structure model

The histograms of AE and DE are produced by a simulation

creating a set of structures each with a set of interatomic

vectors generated randomly. This is achieved by assuming that

the fractional part of the scalar product h � Rij in equations

(13) and (14) is uniformly distributed on the [0, 1] range. In

practice, each fractional part of h � Rij is produced by drawing

separately a pseudo-random number based on a uniform

distribution on the [0, 1] range. Each structure in the set

produces one value each of AE and DE, and the multitude of

structures results in the histogram. Normalized scattering

factors were assumed to be independent of sinð#Þ=� and were

computed on the basis of the composition of the simulated

structure. The p.d.f.s were only computed at the midpoints of

the histogram bins. It is a multiple-structure single-reflection

calculation. This is analogous to the fixed-index and random-
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position assumption underlying most direct methods (e.g.

Giacovazzo, 1998).

For our tests of the random-structure model, the hypothe-

tical P1 structure of composition U2C19 measured with Cu K�
radiation was used. The computation of the scattering factors

was carried out as indicated in Appendix B of Flack & Shmueli

(2007). The computation of the jAEj and DE sums was carried

out for 50 000 random structures from which the histograms

were constructed and to which the p.d.f.s were scaled up.

The underlying assumptions for this simulation are the same

as those used in the analytical derivation of the p.d.f.s in xx3

and 4. A reasonable agreement between the histograms and

the p.d.f.s would confirm the analysis.

5.2. Published crystal-structure model

The histograms of AE and DE are constructed from a

published crystal structure. The atomic coordinates are taken

from the literature and an overall isotropic displacement

parameter was employed. It was taken as an average of all

isotropic or equivalent isotropic displacement parameters of

the atoms. AE and DE are calculated from the atomic coor-

dinates using equations (13) and (14) for all Friedel pairs

reported as having been observed, although the observed

intensities themselves are not used. In spite of the normal-

ization of AF and DF by equations (7) and (8), respectively,

there remained some dependence on sinð#Þ=�, especially at

low values of the diffraction angle. We therefore averaged the

coefficients aij and dij as well as the maximum values A0EðmaxÞ

and DEðmaxÞ over all the Friedel pairs and used these

averages in the computation of the p.d.f.s pðA0EÞ and pðDEÞ.

The computation comprised:

(i) a retrieval of the positional and displacement parameters

of the structure examined from its CIF file,

(ii) an analysis of the deposited hkl file in terms of Friedel

pairs and unpaired reflections,

(iii) computation of all the AE’s and DE’s from the equa-

tions (13) and (14) and construction of their histograms, and

(iv) computation of the p.d.f.s at four points at the basis of

each histogram bin, including the midpoint of the bin. (In one

instance only the scalar products were replaced by pseudo-

random numbers.)

It is a single-structure multiple-reflection calculation. This is

analogous to the variable-index and fixed structure assump-

tion underlying intensity statistics (e.g. Shmueli & Weiss, 1995;

Section 1.3).

For our tests of the published crystal-structure method, the

reflection data and the structural parameters for the

example considered were taken from the CIF and hkl files

accompanying the work of Chartrand et al. (2007) (CSD

code YIDYIF). The structure belongs to the triclinic system,

space group P1, the formula of the unit cell content being

C46H32Br4F12N8P2Ru. High-quality intensity data, according

to their analysis by Flack et al. (2010), were collected with

Cu K� radiation by Chartrand et al. (2007). The structure thus

displays considerable atomic heterogeneity and significant

resonant scattering, which justify its choice in the comparison

with the p.d.f.s derived in this work. All the real and imaginary

parts of the resonant scattering contributions and all the

positional and isotropic/equivalent displacement parameters

were included in the computations. The free-electron atom

scattering factors were computed from the analytical

approximation of Brown et al. (1999) and the resonant scat-

tering contributions were taken from Creagh (1999). The total

number of reflections is 7003, containing 3135 Friedel pairs

and 733 unpaired reflections. The latter were not included in

the computation. Measured intensities were not used.

The discrepancies between the histograms and the p.d.f.s

would attest to the validity of the uniform-distribution

approximation for the structure examined, and the assumption

of statistically independent contributions of interatomic

vectors. These assumptions underlie the derivations of the

p.d.f.s.

[Note: Whether we have the multiple-structure and single-

reflection or the single-structure and multiple-reflection

situation we presume that the components of the interatomic

vectors are rationally independent (e.g. Shmueli & Weiss,

1995; Section 1.3). In simpler terms, we require that the

interatomic vectors be in general positions of the space group

of the Patterson function.]

5.3. Observed intensities

The histograms of AE and DE are constructed directly from

the reduced and normalized intensities in the literature

without any reference to the crystal-structure model.

Since the purpose of our study was to establish the limits of

validity of the analytical p.d.f.s derived in xx3 and 4, we have

not produced histograms from the intensity data in the

literature. Of course, if it turns out that our p.d.f.s have a wide

range of validity, comparison of the histograms from intensity

data with the p.d.f.s would help in the choice of space group.

However, Flack et al. (2010) observed that values of D for

published crystal structures are often dominated by random

and systematic errors in measurement and data reduction.

6. Results

Figs. 1 and 2 show the results for the U2C19 compound using

the random-structure model described in full in x5.1. The

histogram and p.d.f. of jAEj for U2C19 are shown in Fig. 1.

Agreement between the two is very good, R = 0.042, thus

supporting the correctness of the above analysis. The histo-

gram and p.d.f. of DE for U2C19 can be seen in Fig. 2.

Agreement between the two is also good, R = 0.070, thus again

confirming the above analysis.

Figs. 3 and 4 show the results for YIDYIF using the

published crystal-structure model described in full in x5.2. The

histogram and p.d.f. of jAEj for YIDYIF are shown in Fig. 3.

There is a qualitative agreement but the discrepancy is

significant, R = 0.244. This may be due to the fact that in the

derivation of the p.d.f. pðjA0EjÞ we assumed that:

(i) the functions depending on the interatomic vectors are

statistically independent, and
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(ii) the fractional parts of the scalar products h � Rij are

uniformly distributed on the [0, 1] interval.

Either or both of these assumptions may not be exactly

fulfilled in the case of a real crystal. It would, in principle, be

possible to test the fulfillment of the second assumption by

replacing the scalar products h � Rij with pseudo-random

numbers, uniform on the [0, 1] interval. However, the cosine

series in equation (13) would then be as likely positive as

negative, while AE is positive by definition. The physical

reason for such an effect is that in general a random set of

interatomic vectors is not the vector set of a random crystal

structure. Such a simulation would make no physical sense.

Note, however, that all the AE’s on which Fig. 3 is based are

positive as they are derived from a real crystal structure.

The situation with the DE sums is similar. Fig. 4 shows the

comparison of the histogram and p.d.f. of DE. The qualitative

agreement seems to be better than that in Fig. 3 and the

discrepancy between the histogram and p.d.f. is smaller, R =

0.146, than that for the AE sums. In a separate test, since DE

may be positive as well as negative, we replaced the explicit

expressions for the scalar products h � Rij with pseudo-random

numbers uniform on the [0, 1] interval. The result is shown in

Fig. 5. A significantly better agreement was obtained in this

partial random-structure model approach, R = 0.076, and it is

research papers
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Figure 2
Histogram and p.d.f. of DE for compound U2C19 calculated by the
random-structure model. The p.d.f. is indicated by a solid line. The
discrepancy factor is R = 0.070. Full details are given in xx5.1 and 6.

Figure 3
Histogram and p.d.f. of jAEj for compound YIDYIF calculated by the
published crystal-structure model. The p.d.f. is indicated by a solid line.
The discrepancy factor is R = 0.244. Full details are given in xx5.2 and 6.

Figure 4
Histogram and p.d.f. of DE for compound YIDYIF calculated by the
published crystal-structure model. The p.d.f. is indicated by a solid line.
The discrepancy factor is R = 0.146. Full details are given in xx5.2 and 6.

Figure 1
Histogram and p.d.f. of jAEj for compound U2C19 calculated by the
random-structure model. The p.d.f. is indicated by a solid line. The
discrepancy factor is R = 0.042. Full details are given in xx5.1 and 6.



tempting to conclude that the residual discrepancy is mainly

due to the assumed statistical independence of the complex

exponentials in equation (23), which also depend on the

interatomic vectors.

7. Concluding remarks

The current work is limited to the triclinic space group P1. A

natural extension will thus be to extend the work to the other

229 space groups, taking care of the general/special centro-

symmetric/non-centrosymmetric status of the reflections in

these space groups (see Shmueli & Flack, 2009). An important

question of strategy is the choice of the form in which the

p.d.f.s should be prepared so as to be of maximum use to the

structure analyst. Historically, p.d.f.s have been preferentially

prepared in analytical form, which are then evaluated

numerically using parameters appropriate to the crystal

structure under consideration. However, Shmueli & Weiss

(1995) and the current work have used numerical simulation

to check the analytical solution. Considering the immense

calculation power and low price of modern computers, it may

not in fact be necessary to seek analytical solutions and one

may rely on suitably optimized simulations. Most, but not all,

of the analysis necessary for implementing the latter approach

in software is presented in the current work. Moreover, for use

as an aid in space-group determination, the simulations do not

need to be of high accuracy, thus limiting the calculation time

necessary.

We also wish to point out that the analytical expressions for

AðhÞ and DðhÞ in terms of interatomic vectors in equations (4)

and (5) led Flack et al. (2010) to investigate the practical

applications of their Fourier transforms. These are the A and

D Patterson functions, and are found to have real use in the

validation of a crystal-structure determination.

We thank the referees for constructive comments, and we

are grateful to the Editor for his suggestions and interest.
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